[OPEN]
No blue bats, no blue squirrels, or blue dogs.
Even blue whales aren’t that blue.
Animals come in pretty much every color, but blue seems to be the rarest.
What’s cool, though, is when we do find a blue animal, they’re awesome looking.
Nature doesn’t do halfway with blue.
To understand why this is, we’re gonna journey through evolution, chemistry, and some very
But, first we’re gonna need to understand why animals are any color at all, and to do
that, we need to go look at some butterflies… because butterflies are awesome… and if
you don’t think so, you’re wrong
He’s curator of Lepidoptera at the National Museum of Natural History in Washington D.C.
They’re a group of moths that evolved to be active during the day, and if you’re
active during the day, you have an advantage: You can use light to communicate.
but out of all insects, butterflies display the brightest and most detailed patterns.
And there’s a good reason for that:
The colors in butterfly wings deliver messages, like “I’m toxic”, or “I’m a male
and this is my territory”, but not all butterfly colors are created equal.
If we zoom way in on a butterfly wing, we see the colors come from tiny scales.
It’s actually how moths and butterflies get their scientific name.
Oranges, reds, yellows browns…those scales all contain pigments, organic molecules that
absorb every color except what we see.
Black scales absorb all colors.
Animals, from butterflies to birds to you and me, don’t make these pigments from scratch,
they’re made from ingredients in our diet.
You might know this thanks to flamingos: They’re born gray, but turn pink thanks to pigments
called carotenoids in crustaceans they eat.
So when it comes to these colors: You are what you eat.
If you move the camera, you can see that the color changes as you move the camera.
This is because there’s no blue pigment in these butterflies
Wait… so they’re blue, but they’re not really blue?
Yes.
You’re lying to me butterflies!
These are Blue Morpho butterflies, maybe the prettiest butterflies of all.
I mean… they did make it the butterfly emoji.
The blue color isn’t from a pigment.
The blue comes from the shape of the wing scale itself, and when I learned how this
If we zoom way in on a blue wing scale, we see these little ridges.
If we slice across the scale, and look closer, we see those ridges are shaped like tiny Christmas
The arrangement of the branches is what gives Morpho wings their blue color.
When light comes in, some bounces off the top surface.
But some light passes into the layer and reflects off the bottom surface.
For most colors of light, waves reflecting from the top and bottom will be out of phase,
they’ll be canceled out, and that light is removed.
But blue light has just the right wavelength: the reflected light waves are in sync, and
that color makes it to our eye.
This hall of mirrors only lets blue light escape.
There’s even a pigment at the base that absorbs stray red and green light to make
That’s how we get this awesome iridescent blue.
The microscopic structure of the wing itself.
All of this happens because of the way light bends when it moves from air into another
So if we fill all those tiny gaps with something other than air, like alcohol, the blue disappears.
Technically, this “changes the index of refraction”, but in plain English that means
blue light is no longer bent the right way.
The microscopic light filter is broken.
But these butterflies live in the rainforest.
You think they’d lose their color any time they got wet, right?
These wing scales are made of a material that’s naturally water-resistant.
What about this blue jay feather?
If we look through it, the color completely disappears.
Each feather bristle contains light-scattering microscopic beads, spaced so everything but
Unlike the highly-ordered structures we find in butterfly wings, these feather structures
are more messy, like a foam, so instead of changing as we move, the color’s more even
Again it’s the shape of the feather, not pigment.
But the light reflecting structures here are more ordered, like a crystal, so it’s brighter
There’s even a monkey–WHOA let’s keep this PG!!–even that color is made by the
adding and subtracting of light waves thanks to structures in the skin… not pigment.
And yes, even your blue eyes, are colored by structures, not pigments.
Outside of the ocean, almost exclusively, the bluest living things make their colors
with microscopic structures, and each one’s a little different.
No vertebrate, not a single bird or mammal or reptile that we know of, makes a blue pigment
In fact, there’s only one known butterfly that has cracked the code for making a true
Blue as a pigment in nature is incredibly rare.
But there’s one exception so far that we know about, and these are over here called
They have evolved a blue pigment.
They’re not very common and we don’t know much about them, and I don’t know of any
That’s a really special butterfly.
Why is almost all of nature’s blue made from structures and not pigments like everything
else?
I’ve asked this question to several scientists that study color, and here’s their best
theory so far: At some point way back in time, birds and butterflies evolved the ability
But they hadn’t yet evolved a way to paint their bodies that color.
But if they could, it’d be like going from early Beatles to Sgt.
it meant new opportunities for communicating and survival.
Creating some blue pigment–out of the blue–would have required inventing new chemistry, and
there was no way to just add that recipe to their genes.
It was much easier for evolution to change the shape of their bodies, ever so slightly,
at the most microscopic level, and create blue using physics instead.
They solved a biology problem with engineering.
What I love about this is these colors have fascinated curious people for hundreds of
After looking at peacock feathers through one of the first microscopes back in the 1600’s
Robert Hooke wrote: “these colours are onely fantastical ones”
Even Isaac Newton noticed there was something unusual about these blues, and scientists
have been studying it ever since.
Not only because the science is interesting, but because it’s beautiful.