[MUSIC]
The breakfast table’s probably the last place you'd expect to find cool physics, but
there is some awesome science happening right here, and you’ve probably seen lots of times
Ever notice how cereal tends to stick together in the middle of the bowl?
That makes it easy to eat, but why does it happen?
We see this same clumpage with other objects too: paper clips, thumb tacks, even bubbles
in a beverage will snap together.
Maybe you’ve noticed this, but scientists didn’t fully understand what was going on
until 2005, when a pair of mathematicians decided to hit the lab, it hthe kitchen, and
Breakfast cereal is less dense than water (and milk is mostly water).
It’s buoyant, it weighs less than the milk it displaces.
That force of buoyancy pushes up on each ring, until it matches the downward force of gravity.
This interaction holds the Cheerios at the surface of the liquid, like little toasty
rafts drifting together on top of a sea of cereal milk (mmmm cereal milk).
It's a really complicated way of saying cereal floats.
But look closely at where the cereal meets the liquid.
The same thing happens at the edge of the container, thanks to the meniscus effect.
Water molecules are sticky – they’re attracted to each other, but they’re even more attracted
to the edges of your bowl or glass, or to the edge of the cereal itself.
That “adhesion” forms a U-shape wherever the liquid meets an edge.
A buoyant object will always be pushed up the liquid to the highest point on a meniscus.
That’s what makes them stick to the edge, and what causes the cheerios to become cheeri-amigos.
Any two nearby Os are pushed to a high point between them, and clumps are pushed towards
the overall highest point in the bowl, around the edge.
I don’t recommend eating paperclips, but toss them in water and they sink.
Place them carefully though, and you can get them to float.
They’re too dense to be buoyant, they float because of surface tension.
Water molecules like to stick to each other so much, they can behave like a membrane that’s
strong enough to hold up tiny things.
Let’s try it with these thumbtacks.
Like the paper clips, you can see they’re pushing that membrane dow, just not hard enough
If I place another one nearby, watch what happens.
They’re attracted to each other, just like the Cheerios.
But the water around each one is curving down.
Instead of climbing up the water like cereal did, they fall into each other’s sinkhole.
We can mess this scenario up just by adding soap.
The chemical properties of soap lower the surface tension of water, so anything relying
on surface tension to stay afloat will sink.
But buoyant objects don’t rely on surface tension, so they continue surfing the meniscus.
The first time I did this, I wondered if the tacks were being pulled together by static
attraction on the plastic coating or something.
So I put in just the plastic bit to see.
But instead of being pulled toward the tacks, something strange happened… they repelled
The same thing happens with Cheerios and a paper clip.
That’s because light, floaty objects run away from the low points caused by the heavy
A buoyant object will always repel something held up by surface tension’s stretchy membrane.
Just to be clear, you should never put thumbtacks in your cereal.
But this is what would happen if you did.
All of this made me wonder: What could happen if we could reverse the direction of water's
I coated this glass with a hydrophobic coating that does just that.
When I put thumbtacks on top of the water in here, they floated to the edge instead
And that buoyant object did the opposite, it floated to the middle.
So that’s cool and all, but does the physics of cereal clumping actually matter in the
It does if you’re a tiny insect.
These pond skaters are nature’s Cheerios.
They float so well that even a load 15 times their body weight won’t make them sink.
Tiny hairs on their legs trap air bubbles and increase their buoyancy.
They’re basically wearing swim floaties on their feet.
Other aquatic insects like water treaders exploit surface tension, just like thumbtacks
But they get in trouble when it’s time to get out.
Gravity is pushing them into the depressions under their feet, but they’ve come up with
a clever way to climb the meniscus.
But by arching their bodies and lifting their front and back ends, the bugs curve the water
up, and are pulled to the edge just like the Cheerios were.
They’re carried uphill by a physics-powered water escalator.
If you can find science like this at breakfast, imagine what else you might see the rest of
day.
Try this for yourself, and see what other floating objects you can get to attract or
Leave a comment and let me know what you find.
And if you see any cool physics in everyday life I should check out in a future video,